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The wavelet transform is a powerful technique in signal

processing and image analysis and it is shown here that

wavelet analysis of low-resolution electron-density maps has

the potential to increase their resolution. Like Fourier

analysis, wavelet analysis expresses the image (electron

density) in terms of a set of orthogonal functions. In the case

of the Fourier transform, these functions are sines and cosines

and each one contributes to the whole of the image. In

contrast, the wavelet functions (simply called wavelets) can be

quite localized and may only contribute to a small part of the

image. This gives control over the amount of detail added to

the map as the resolution increases. The mathematical details

are outlined and an algorithm which achieves a resolution

increase from 10 to 7 AÊ using a knowledge of the wavelet-

coef®cient histograms, electron-density histogram and the

observed structure amplitudes is described. These histograms

are calculated from the electron density of known structures,

but it seems likely that the histograms can be predicted, just as

electron-density histograms are at high resolution. The results

show that the wavelet coef®cients contain the information

necessary to increase the resolution of electron-density maps.
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1. Introduction

One of the important goals of current crystal structure analysis

is to develop methods for the complete ab initio determination

of macromolecular structures. A number of different

approaches are being made towards this problem and there is

evidence of progress. One course of action, which has grown

out of the work carried out at York, is to

(i) determine an initial image of the molecule at about 10 or

15 AÊ resolution to show the molecular envelope,

(ii) increase the resolution of this image to about 5 AÊ to

resolve the tertiary structure and

(iii) use image-processing techniques to improve the

electron-density map and to increase its resolution to that of

the X-ray data.

The easiest of these stages and hence the ®rst one to be

substantially developed is (iii) above. It was started by Zhang

& Main (1990), who produced the computer program

SQUASH, and continued by Cowtan & Main (1993). This has

resulted in the current computer program DM in the CCP4

protein crystallography program library (Collaborative

Computational Project, Number 4, 1994). In the absence of ab

initio images, it has been very successful at improving the

electron-density maps obtained by more standard methods

such as molecular replacement, multiple isomorphous repla-

cement and especially multiple-wavelength anomalous



dispersion. Its success depends upon having a starting image

with a resolved tertiary structure and so is limited to resolu-

tions higher than about 5 AÊ .

Stage (i) above is currently being developed by a number of

people (see, for example, Lunin et al., 1990). It typically yields

images of between 10 and 15 AÊ resolution, depending upon

the volume of the asymmetric unit and the solvent content.

Higher resolutions than this are currently not available

because the only information used by the method is the

electron-density histogram, the solvent content and the

observed diffraction pattern. This is suf®cient to yield the

molecular envelope, but no structural details within the

molecule.

There is evidently a resolution gap between about 12 and

5 AÊ in which it is dif®cult to determine phases reliably using

only the X-ray data from a single diffraction pattern. Devel-

opment of a method to achieve this would make possible the

complete ab initio determination of the crystal structure. This

is the task of stage (ii) above and it has proved to be an

extremely dif®cult problem. This paper describes some recent

work which may go some way towards solving the problems

involved.

2. Wavelet analysis

Wavelet analysis has become a highly successful technique in a

number of ®elds, notably in signal and image processing, and

there is now an abundance of literature on the subject. For

completeness, we give a brief outline of the relevent theory

here.

As we are dealing with electron density de®ned at grid

points, we only consider the discrete wavelet transform

(DWT) and use the multi-resolution approach developed by

Mallat (1989). We consider ®rst the case of one-dimensional

electron density and then show that the theory easily extends

to three dimensions.

We consider a function '(x), which together with its integer

translates forms an orthonormal basis for L2 (R) and therefore

for the type of function that we are interested in, i.e. the

electron density. We can then represent the electron density

�(x) as a linear combination of these functions

��x� � Pn
k�1

Ak'�xÿ k�; �1�

where n is the number of grid points. As we only consider �(x)

at discrete grid points, x = 1, . . . , n, the parameter k translates

' by an integer number of grid points. We use the variable x

rather than one which conventionally denotes an integer as

the theory extends to a real-valued variable, whereas k will

always be an integer. Since the functions {'(x ÿ k),

k = 1, . . . , n} are orthonormal, the coef®cients Ak are just the

inner products h�(x), '(x ÿ k)i and so can easily be calculated

(for example, in the wavelet context, see note 12, p. 166,

Daubechies, 1992). Thus, we have

��x� � Pn
k�1

h��x�; '�xÿ k�i'�xÿ k�: �2�

In the familiar Fourier representation of the electron density

as a sum of structure factors, the orthogonal functions are

sines and cosines and each one contributes to every part of the

density. In direct contrast, we choose our function '(x) to have

compact support, i.e. one which is only non-zero for a small

number of grid points, so that each of the translates only

contributes to a particular part of the electron density.

[Obviously, the function '(x) must be periodic with period n

the same as the electron density, but we only consider one

period here.] In addition, we require a relationship between

the functions '(x ÿ k) and the same functions scaled by a

factor of two. This is achieved by choosing '(x) such that it

satis®es a scaling equation

'�x=2� � Pn
k�1

Ck'�xÿ k� �3�

for some coef®cients Ck. Provided n is a multiple of 2, these

wider functions can be used to give an approximate or

`smoother' version of the electron density requiring only half

as many coef®cients,

��x� ' Pn
k�1

h��x�; '�x=2ÿ k�i'�x=2ÿ k�: �4�

We store the differences between the exact representation of

the electron density in (1) and the approximation in (4) in

terms of a related function,  (x), de®ned such that

 �x=2� � Pn
k�1

Dk'�xÿ k�; �5�

where it can be shown that the coef®cients Dk are related to

the Ck in (3) by

Dk � �ÿ1�nÿk
Ck:

Using these functions, we can again express the electron

density exactly, but this time as the smoothed version in (4)

plus the details which need to be added to this,

��x� � Pn=2

k�1

h��x�; '�x=2ÿ k�i'�x=2ÿ k�

� Pn=2

k�1

h��x�;  �x=2ÿ k�i �x=2ÿ k�: �6�

Notice that, in going from (1) to (4), the number of coef®cients

required is not increased. If n is also a multiple of 4, we can

repeat the process on the smoothed density to obtain an even

smoother version plus two different levels of detail, again

without increasing the number of coef®cients. Thus, we can

write

��x� � Pn=4

k�1

h��x�; '�x=4ÿ k�i'�x=4ÿ k�

� Pn=4

n�1

h��x�;  �x=4ÿ k�i �x=4ÿ k�

� Pn=2

n�1

h��x�;  �x=2ÿ k�i �x=2ÿ k� �7�

and, provided n is a power of 2, we can keep repeating the

process, always saving the details from the previous levels and
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smoothing further to separate out a new level of detail. If, say,

n = 2r, we would eventually arrive at a situation with a single '
function representing the smooth component and r different

levels of detail, giving the full wavelet transform of the elec-

tron density, �(x). The function ' is referred to as the

smoothing function or, because of (3), the scaling function,

whereas the functions  , which encode the details, are called

the wavelet functions or simply wavelets.

The wavelet coef®cients h�(x), '(x/2r ÿ k)i and

h�(x),  (x/2r ÿ k)i tell us how much each of the scaling

functions '(x/2r ÿ k) and the wavelet functions  (x/2r ÿ k)

contribute to the electron density. The dilation parameter 2r

gives the level of detail and the translation parameter k gives

the position in the map that a particular function occurs. The

scaling equation (3) gives a relationship between the coef®-

cients in (2) and those in (4) since

h��x�; '�x=2ÿ k�i � R ��x�'�x=2ÿ k� dx

� R ��x�Pn
j�1

Cj'�xÿ 2kÿ j� dx

�Pn
j�1

Cj

R
��x�'�xÿ 2kÿ j� dx

�Pn
j�1

Cjÿ2kh��x�'�xÿ j�i �8�

and similarly, using (5), we ®nd that

h��x�;  �x=2ÿ k�i �Pn
j�1

Djÿ2kh��x�; '�xÿ j�i; �9�

so that the coef®cients in (6) can be obtained from those in (2).

Thus, the coef®cients at each level of the transform can be

calculated from those of the previous level, allowing the

wavelet transform to be calculated quickly and easily, and as

the wavelet coef®cients completely characterize the electron

density, only these need to be stored. This is the basis for the

fast wavelet transform (FWT) which can be implemented by

matrix methods (see Press et al., 1992). However, it should be

noted that in Press et al. (1992) the matrix is applied directly to

a function f(x) rather than the initial coef®cients,

h f(x), '(x ÿ k)i. Strictly speaking this is incorrect, although it

is a common practice where f(x) is considered an approx-

imation to the coef®cients h f(x), '(x ÿ k)i. The effect of this

approximation depends on the particular application, but

some argue that it should never be performed and Strang &

Nguyen (1996) refer to this as a `wavelet crime'.

At any level of the wavelet transform, the electron density

can be restored by multiplying the wavelet coef®cients by the

corresponding wavelet functions, providing of course that the

coef®cients were calculated from correct starting coef®cients

h�(x), '(x ÿ k)i and not from the approximation �(x).

However, the orthogonality of the functions also allows a

simple inverse transform to be performed.

In two dimensions, the smoothing function can be de®ned

by

'�x; y� � '�x�'�y�;
leading to the wavelet functions

 1�x; y� � '�x� �y�;
 2�x; y� �  �x�'�y�;
 3�x; y� �  �x� �y�

for the ®rst level of the transform. Similarly, in three dimen-

sions, the smoothing function '(x, y, z) = '(x)'(y)'(z) gives

seven different wavelet functions for a single level transform,

though these can be grouped together into three types

depending on the number of  functions involved.

A set of wavelet functions is de®ned by the wavelet ®lter

coef®cients {Ck, k = 1, . . . , m}, where m is the support of the

wavelet, i.e. the number of non-zero integer values of '. [Note

that if m < n, which is usual, some of the coef®cients Ck in (3)

and hence the coef®cients Dk in (5) will be zero.] There are

many wavelet systems which have been purpose-built to

satisfy the requirements on the functions ' and set out in the

above discussion. However, the wavelets constructed by

Daubechies (1992) have particularly good compact support

and, as we are dealing with a relatively small number of grid

points, are particularly suitable for our purpose. Daubechies'

wavelets may have 2, 4, 6, . . . ®lter coef®cients and cannot be

Figure 1
A single wavelet function from the Daubechies' family of order 6 (a) and
of order 20 (b).



expressed as analytical formulae but are instead formed by an

iterative procedure via (3). Performing an inverse wavelet

transform on a unit vector shows what the wavelet functions

actually look like. Fig. 1 shows a single wavelet function for

Daubechies' wavelet of order 6, i.e. the wavelet constructed

from six ®lter coef®cients, and for Daubechies' wavelet of

order 20. An orthonormal basis consists of scalings and

translations of either of these functions. As we have said, the

relationships in (8) and (9) mean that in the implementation of

the FWT we only need to know the ®lter coef®cients

{Ck, k = 1, . . . , m} and Daubechies has tabulated these for

wavelets of order up to 20, some of which are also available in

Press et al. (1992).

3. Image analysis

The problem of increasing the resolution of a low-resolution

electron-density map is one of adding the right sort of detail to

it and in the right place. Since wavelet analysis separates an

image into smooth and detail components, it affords the

possibility of controlling or even creating the detail to be

added to the map. Rather than use a complete wavelet

transform, only a single stage has been used in this analysis.

For a two-dimensional image, the transform is performed by

transforming the x and y directions separately. The x trans-

form separates the image into the smooth half and the detail

half, as illustrated in Fig. 2. This is followed by the y transform,

which produces the four areas at the right of the ®gure. There

are thus four kinds of wavelet coef®cients ± the coef®cients of

the smoothing functions, '(x ÿ j, y ÿ k), which we denote by

SS, and the coef®cients of the three different wavelet func-

tions,  1(x ÿ j, y ÿ k),  2(x ÿ j, y ÿ k) and  3(x ÿ j, y ÿ k),

denoted SD, DS and DD, respectively. Now  1(x ÿ j, y ÿ k) =

'(x ÿ j) (y ÿ k) =  (y ÿ k)'(x ÿ j) and  2(x ÿ j, y ÿ k) =

 (x ÿ j)'(y ÿ k) = '(y ÿ k) (x ÿ j) so that, if we do not

expect systematic differences between the x and y directions,

the SD and DS coef®cients cannot be distinguished statisti-

cally. For a two-dimensional image, we thus have three classes

of wavelet coef®cients. For a three-dimensional image, one-

dimensional wavelet transforms are performed in the three

different directions giving SSS, SSD, SDS, DSS, SDD, DSD,

DDS and DDD coef®cients. Of these, the SSD, SDS and DSS

coef®cients will be indistinguishable, as will the SDD, DSD

and DDS. There will therefore be four classes of wavelet

coef®cients.

The immediate questions arising are

(a) is the expected detail in the image re¯ected in the

statistical distribution of the coef®cient values?

(b) Can the wavelet-coef®cient histograms be predicted for

an unknown image?

(c) Can the image be constructed from the histograms of its

wavelet coef®cients?

Some progress has been made towards answering these

questions.

4. Histograms

The four different wavelet-coef®cient histograms considered

were the SSS, SSD (which includes the SDS and DSS coef®-

cients), SDD (including the DSD and DDS coef®cients) and

the DDD. They were accumulated for a number of maps of

different structures at different resolutions and grid sizes.

Different sizes of molecule and solvent content were also

used. The four histograms are quite distinct, but each has a

shape which appears to be independent of both the structure

and the grid size. In addition, only the SSS histogram has a

shape which depends upon resolution. Examples are shown in

Fig. 3.

The SSS histogram looks like an electron-density histogram

at a lower resolution than the original map. This is to be

expected, since it is effectively obtained from the smoothed

electron density. The other histograms are all symmetrical

about zero, with the DDD histogram approximately Gaussian

in shape and the SDD and SSD histograms increasingly more

pointed. The horizontal scale of each histogram appears to be

a function of grid size and resolution. This suggests that the

histograms may be predicted for an unknown structure.

Wavelet-coef®cient histograms of ordinary photographs

have already been considered by Mallat (1989). It is at ®rst

surprising that they are so similar to the detail histograms of

electron-density maps. However, this should allow us to use

the mathematical model provided by Mallat to describe their

shape.

5. Image construction

In order to make use of the wavelet-coef®cient histograms, it

was assumed that a perfect map at 10 AÊ resolution was already

available. In addition, it was assumed that all the histograms,

including that of the electron density, were also available at

whatever resolution they were required. This information

could then be used to increase the resolution of the starting

map using the following outline.

(i) Obtain all histograms at the required resolution.

(ii) Calculate the electron density using weighted Fobs and

all available phases.

(iii) Perform one stage of the wavelet transform to obtain

the wavelet coef®cients.

(iv) Match the wavelet coef®cients to the four different

histograms.
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Figure 2
The division of a two-dimensional image after one stage of a wavelet row
transform followed by a column transform. S = smooth, D = detail.
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(v) Perform the inverse wavelet transform to retrieve the

electron density.

(vi) Impose the space-group symmetry by averaging the

density over equivalent points.

(vii) Match the electron density to its histogram.

(viii) Repeat from (iii) until converged.

(ix) Perform the Fourier transform to obtain structure

factors.

(x) Compare the calculated Fs with the Fobs at the given

resolution and estimate weights.

(xi) Repeat from (ii) until converged.

(xii) Increment the resolution and repeat from (i) until the

®nal resolution is reached.

A ¯ow diagram of the procedure is shown in Fig. 4. The

original 10 AÊ phases as well as any phases obtained in

previous cycles are used to calculate the electron density in

(ii). As the space-group symmetry gives rise to rather

complicated relationships among the wavelet coef®cients

which are not satis®ed by the histogram matching, the calcu-

lations in (iii), (iv) and (v) are performed on the complete unit

cell. The density produced in step (v) therefore lacks the

correct symmetry. It is restored by averaging over equivalent

points in step (vi) and then iterating the process in steps (iii) to

(viii).

The weighting scheme used in step (x) is very simple. It uses

the calculated Fs from step (ix) as a ®rst approximation to the

weighted Fobs, i.e. the weight w(h) = |Fcalc(h)|/|Fobs(h)|. The

weight is then increased by a small factor unless the phase is

restricted by symmetry, in which case it is increased by a

smaller factor, i.e. the amplitude of the new map coef®cient is

taken as

jFobsj if �1� "�jFcalcj > jFobsj;
r�1� "�jFcalcj if �1� "�jFcalcj < jFobsj;

where " = 0.1 for acentric data and 0.001 for centric data. The

weighting scheme is at present somewhat ad hoc and can

Figure 3
Wavelet-coef®cient histograms: (a) SSS; (b) SSD; (c) SDD; (d) DDD.



surely be improved. So far, however, other apparently cleverer

weighting schemes have all given poorer results.

6. Results

Most of the tests have been carried out on the known structure

of RNAase (Sevcik et al., 1981). It crystallizes with a single

molecule of 96 residues in the asymmetric unit of the space

group P212121, with unit-cell parameters a = 64.9, b = 78.3,

c = 38.8 AÊ and about 45% solvent content. The tests started

with a perfect map at 10 AÊ resolution and assumed that all the

wavelet-coef®cient and electron-density histograms were

available at any appropriate resolution. The main objective

was to see if this information was suf®cient to increase the

resolution of the starting map.

Initially, an easier calculation was tried. Instead of using

histograms of wavelet coef®cients, the coef®cients were

calculated from an exact map of the known structure at the

desired resolution. These were then sorted on value and used

in the calculation as an ordered list. It was found that the

resolution of the starting map could be increased as far as

desired and almost without error. In practice, the phase

re®nement was slow, but the mean phase error could be

lowered to less than 2� with suf®cient cycles of re®nement.

However, the calculation became increasingly lengthy as the

resolution increased and for this reason was stopped at about

7 AÊ . Although the test is unrealistic, as ordered lists of correct

wavelet coef®cient and electron-density values would not

normally be available, it is still quite remarkable that an

almost exact 7 AÊ map could be obtained in this way. This

increase in resolution of the starting map required the calcu-

lation of 250 unique new phases.

The calculation was repeated using statistical values for the

wavelet coef®cients which were consistent with the correct

histograms. It was quickly established that introducing too

many new re¯ections on each increment of resolution led to

poor phase determination. However, if the number of new

re¯ections was limited to 12 or less, good phase determination

could be achieved. Another device which improved the results

was to apply full phase shifts only to the newest re¯ections and

to reduce the phase shifts as a function of resolution for those

re¯ections previously established in the calculation. This was

achieved simply by averaging with the results of earlier cycles.

In addition, the best results were obtained when the coarsest

electron-density grid which was consistent with the resolution

was used throughout the calculation. This required several

changes of grid as the resolution increased. With these

precautions, using calculated histograms rather than ordered

lists gave a 46� weighted mean phase error over the 250 new

phases ± a perfectly acceptable result.

The different wavelet histograms do not contain the same

amount of information on the electron density. A series of

tests was carried out in which each class of coef®cient in turn

was given exact values while the remainder were given

statistical values consistent with the observed histograms.

Exact values for the DDD coef®cients gave no improvement

over the use of statistical values. The greatest improvement

was achieved when the SSS coef®cients were given exact

values. This resulted in a 24� mean phase error over the 250

new re¯ections. These are the coef®cients which give the basic

electron density upon which the detail is added and it is clearly

important for this to be correct. A summary of these results is

given in Table 1.

The effect of changing the wavelet function was brie¯y

examined. All the tests described so far used Daubechies'

wavelets of order 4. The program was amended to apply

Daubechies' wavelet of order 6 in the hope that this more

extensive wavelet would mimic a coarser electron-density grid.

The results were disappointing. The new function gave rise to

a larger mean phase error upon increasing the resolution of

the map. This is consistent with the observation that it gave

smaller magnitudes for the DDD coef®cients. Clearly, other

wavelet functions need to be examined.

7. Discussion

It is quite remarkable that a perfect reproduction of the image

can be obtained from an ordered list of the wavelet coef®-

cients. Even with statistical values of the coef®cients, an

acceptable image can still be obtained starting from a perfect
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Figure 4
Flowchart of the algorithm used.

Table 1
The mean phase errors over all phases between 10 and 7 AÊ for the
different types of wavelet coef®cients used.

Wavelet coef®cients used Mean phase error (�)

All values taken from ordered
lists of exact values

2

Values for SSS coef®cients taken
from ordered lists of exact values;
statistically correct values used
for all other coef®cients

24

Values for DDD coef®cients taken
from ordered lists of exact values;
statistically correct values used
for all other coef®cients

46

Statistically correct values
used for all coef®cients

46
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low-resolution map. Obviously, the success of this method

depends upon the histograms being predictable, but it is clear

from our tests that wavelet analysis has a lot to offer phase

re®nement and extension at low resolution. It is intended to

apply this also in phase re®nement at higher resolution. In the

present study, the wavelets used were de®ned on an electron-

density grid the spacing of which changes from one crystal to

another. It may be more satisfactory either to perform the

wavelet transform in reciprocal space or to ®nd a wavelet

function that can be scaled to match the dimensions of the

crystal lattice. In addition, functions other than those of

Daubechies will be investigated.

The authors are grateful to Thierry Voitot for preparing the

histograms of wavelet coef®cients shown in Fig. 3. The work

was supported by the BBSRC Structural Biology and Design

Application Initiative.
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